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INTRODUCTION

In a stochastic medium, the material properties at a
given spatial location are known only statistically [1]. The
most common approach to solving particle transport prob-
lems involving binary stochastic media (BSM) is to use
the atomic mix approximation [1] in which the transport
problem is solved using homogenized (volume-averaged)
material properties. A common deterministic model devel-
oped for solving BSM particle transport problems is the
Levermore-Pomraning (LP) model [1, 2]. Zimmerman and
Adams [3] proposed a Monte Carlo algorithm (Algorithm
A) that solves the LP equations and another Monte Carlo
algorithm (Algorithm B) that locally preserves the sampled
material realization [3, 4]; we refer to these Monte Carlo al-
gorithms as the LP and LPLRP (LP local realization preserv-
ing) algorithms, respectively. One-dimensional (1D) planar
geometry benchmark studies have shown that the LPLRP
algorithm is often significantly more accurate than the LP
algorithm for problems with an incident angular flux [3, 4]
as well as for problems with an interior source [4]. The
LPLRP algorithm implementation in these benchmark com-
parisons made explicit use of the one-dimensional nature of
the problem.

The LP model is derived by assuming an “upwind”
closure in the coupling term relating the two materials in
a binary stochastic medium [5]. Su and Pomraning [6]
developed a modified form of this closure by considering
the small correlation length limit and requiring the modi-
fied closure to produce the correct exponential decay for a
source-free halfline albedo problem in rod geometry. They
concluded that the modified closure is generally not inferior
to the LP closure and in some cases is significantly better [6].
Brantley [7] investigated the use of the Su-Pomraning (SP)
closure in the Monte Carlo LP algorithm (LP-SP) for the
suite of benchmark problems described in [4] and concluded
that 1) the LP-SP algorithm was somewhat more accurate
overall than the LP algorithm and somewhat less accurate
overall than the LPLRP algorithm for an incident angular
flux benchmark suite, and 2) the LP-SP algorithm was gen-
erally the least accurate of the algorithms for an interior
source benchmark suite.

Larsen et al. [8] performed an asymptotic analysis of the
transport equation in 1D planar geometry for the situation in
which the physical system is 1) a random binary stochastic
medium with material macroscopic total cross sections and
mean slab width values of O(1) or smaller and 2) optically
thick with weak absorption and sources at each spatial point
and therefore globally diffusive. The asymptotic analysis
demonstrates that, under these assumptions, the transport
equation limits to the conventional diffusion equation with
atomically-mixed (volume-averaged) material properties.
Larsen et al. [8] also demonstrate that, under these same
assumptions, the LP equations asymptotically limit to an

atomically-mixed diffusion equation with a diffusion coeffi-
cient that is too large, leading to an unphysical flattening of
the ensemble-averaged scalar flux distribution. Vasques and
Yadav [9] recently performed an asymptotic analysis of an
adjusted Levermore-Pomraning closure in which the Marko-
vian transition functions are rescaled such that the equations
asymptotically limit to the correct atomically-mixed diffu-
sion equation; we refer to this model as LP-VY.

In this paper, we demonstrate that the adjusted LP clo-
sure proposed by Vasques and Yadav [9] is a special case
of the SP closure obtained by assuming that the absorption
cross sections in the two materials are equal. We further
demonstrate that the Su-Pomraning closure has the correct
asymptotic limit for the diffusive physical system consid-
ered in [8, 9] and is therefore an appropriate closure for
these problems. We also describe how to incorporate these
various closures into the Monte Carlo LP and LPLRP parti-
cle transport algorithms, and we present numerical results
comparing the accuracy of the Monte Carlo LP, LP-VY,
LP-SP, LPLRP, and LPLRP-SP algorithms for the set of
diffusive benchmark problems in [9].

DIFFUSIVE BINARY STOCHASTIC MEDIUM
TRANSPORT PROBLEMS

We consider the following time-independent monoener-
getic particle transport problem [4] with isotropic scattering
in a one-dimensional planar geometry spatial domain:

µ
∂

∂x
ψ (x, µ) + Σt (x)ψ (x, µ) =

1
2

Σs (x)
∫ +1

−1
ψ

(
x, µ′

)
dµ′ +

1
2

Q (x) ,

−X ≤ x ≤ X , −1 ≤ µ ≤ 1 , (1)

ψ (−X, µ) = 0 , µ > 0 , (2)

ψ (X, µ) = 0 , µ < 0 . (3)

Eqs. (1)–(3) are written in standard neutronics notation [10].
When the cross sections are random variables, the angu-
lar flux is also a random variable. The vacuum boundary
conditions given by Eqs. (2) and (3) are non-stochastic.

The binary stochastic spatial medium is assumed to
be composed of alternating slabs of two materials, labeled
with the indices 0 and 1, with the mean material slab width
for material i denoted as Λi. The total and scattering cross
sections for each material are denoted as Σt,i and Σs,i, i = 0, 1,
respectively. The distribution of material slab widths in
the planar medium is assumed to be described by spatially
homogeneous Markovian statistics [1], in which case the
slab width values for material i, λi, follow an exponential
distribution given by

fi (λi) =
1
Λi

exp
(
−
λi

Λi

)
, (4)



where again Λi is the mean material slab width for material
i. Given the mean material slab widths, the probability of
finding material i at any given spatial point, pi, is given by

pi =
Λi

Λ0 + Λ1
. (5)

This material probability corresponds to the volume fraction
of the material in the problem. The ensemble average of any
macroscopic cross section value is given by

〈Σx〉 = p0Σx,0 + p1Σx,1 . (6)

The generalized LP model for this binary stochastic
medium transport problem is

µ
∂
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[
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]
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Λ j
−

piψi (x, µ)
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]
,

−X ≤ x ≤ X , −1 ≤ µ ≤ 1 , (7)

for the material index i = 0, 1 and j , i. Here ψi (x, µ) is
the material i angular flux at spatial location x in direction µ.
The parameter Θ is a general multiplier on the Markovian
transition functions that can be used to implement various
closure models. Setting the multiplier Θ = 1 in Eq. (7)
produces the standard LP model.

Su-Pomraning (SP) Closure

Su and Pomraning [6] derived the following equation
for a closure multiplier ΘS P by requiring the LP model with
the modified closure to give the correct exponential decay
for a source-free halfline albedo problem in rod geometry:

ΘS P =

√
〈Σa〉 〈Σt〉

[
〈Σa〉

(
Σt,1 − Σt,0

)2
+ 〈Σt〉

(
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)2
]

[
〈Σa〉

(
Σt,1 − Σt,0

)]2
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[
〈Σt〉

(
Σa,1 − Σa,0

)]2 ,

(8)
where Σa,i = Σt,i −Σs,i is the absorption cross section for ma-
terial i, and the ensemble-averaged absorption cross section
is computed as 〈Σa〉 = p0Σa,0 + p1Σa,1. For a purely absorb-
ing medium, ΘS P = 1 and the LP approximation (exact in a
purely absorbing medium) is recovered. Setting Θ = ΘS P in
Eq. (7) produces the LP-SP model.

Vasques-Yadav (VY) Closure

Extending the work of Larsen et al. [8], Vasques and
Yadav [9] investigated another form for a closure multiplier
ΘVY using a multiple length-scale asymptotic analysis. They
assumed the physical system is 1) a random binary stochas-
tic medium with material macroscopic total cross sections
and mean slab width values of O(1) or smaller and 2) opti-
cally thick with weak absorption and sources at each spatial
point and therefore globally diffusive. These assumptions
imply that the number of material slabs in the system is
large.

Assuming the physical system is optically thick, they
defined a small dimensionless parameter ε as

ε =
mean width of material slab

width of system
=

1
number of slabs

.

(9)
Assuming that absorption and the interior source are weak
at all spatial points, they scaled the macroscopic absorption
cross section as

Σa (x) = Σt (x) − Σs (x) = ε2σa (x) , (10)

and the interior source as

Q (x) = ε2q (x) , (11)

where σa (x) = O(1) and q (x) = O(1). As a result of these
scalings, the infinite-medium scalar flux solution

φ (x) =

∫ +1

−1
ψ (x, µ) dµ =

Q (x)
Σa (x)

=
q (x)
σa (x)

(12)

is O(1). Under these assumptions, Larsen et al. [8] and
Vasques and Yadav [9] demonstrate using a multiple length-
scale asymptotic analysis that Eq. (1) asymptotically limits
to the correct conventional diffusion equation

−
1

3 〈Σt〉

d2

dx2 φ (x)+〈Σa〉 φ (x) = 〈Q〉 , −X ≤ x ≤ X , (13)

with atomically-mixed (volume-averaged) cross sections.
To proceed with the asymptotic analysis of the LP equa-

tions, Eq. (7), Vasques and Yadav first assumed that the
material macroscopic total cross sections Σt,i and mean ma-
terial slab width values Λi are O(1). Then assuming that
absorption and interior sources are weak in both materi-
als, they scaled the material macroscopic absorption cross
sections as

Σa,i = Σt,i − Σs,i = ε2σa,i , (14)

where σa,i = O(1), and the material interior sources as

Qi = ε2qi , (15)

where qi = O(1). Under the general assumption that ΘVY is
O(1/ε), they proceeded to demonstrate that Eq. (7) asymp-
totically limits to the correct conventional diffusion equation
with atomic mix (volume-averaged) cross sections given by
Eq. (13). Motivated by this asymptotic analysis, Vasques
and Yadav defined the multiplier ΘVY to be

ΘVY =

√
〈Σt〉

〈Σa〉
. (16)

This form of the multiplier has the desirable properties that
1) ΘVY = O(1/ε), resulting in the correct asymptotic dif-
fusion behavior, and 2) ΘVY = 1 when 〈Σa〉 = 〈Σt〉, result-
ing in the correct LP approximation for a purely absorbing
medium. However, we note that this multiplier definition
was motivated by the asymptotic analysis but is not directly
produced by the asymptotic analysis. Setting Θ = ΘVY in
Eq. (7) produces the LP-VY model.



Relationship Between SP and VY Closures

Following some minor algebraic manipulation, the Su-
Pomraning closure Eq. (8) can be related to the Vasques-
Yadav closure Eq. (16) as follows:

ΘS P = ΘVY

1 + Θ2
VY

(
Σa,1−Σa,0

Σt,1−Σt,0

)2

1 + Θ4
VY

(
Σa,1−Σa,0

Σt,1−Σt,0

)2 . (17)

If we make the assumption that the macroscopic absorption
cross section is equal in both materials, Σa,0 = Σa,1, we find
that

ΘS P = ΘVY . (18)

As a result, we conclude that the Vasques-Yadav closure is
a specific case of the Su-Pomraning closure that assumes
that the absorption in the two materials is equal.

Asymptotic Behavior of SP Closure

We also examine the behavior of the Su-Pomraning
closure in the asymptotic regime considered by Vasques and
Yadav [9] in which Σt,i and Λi are O(1) and Σa,i = ε2σa,i, i.e.
O(ε2). Under these assumptions, we find that

ΘS P ∼
1
ε

√
〈Σt〉

〈σa〉

1 +
(
〈Σt〉

〈σa〉

)2 (
σa,1−σa,0

Σt,1−Σt,0

)2 , (19)

and is therefore O(1/ε), because the other quantities in the
expression are O(1). The asymptotic analysis of Vasques
and Yadav demonstrates that closure multipliers Θ that are
asymptotically O(1/ε) result in equations that asymptoti-
cally limit to the correct diffusion equation, Eq. (13). Be-
cause ΘS P is O(1/ε), we expect that the LP model with
the Su-Pomraning closure, Eq. (8), will limit to the correct
diffusion equation, Eq. (13), for the physical system under
consideration.

Monte Carlo Algorithms

A detailed description of the Monte Carlo LP and
LPLRP algorithms is given elsewhere [4] and will be omit-
ted here for brevity. The SP and VY closures can be directly
incorporated into the LP and LPLRP algorithms by intro-
ducing the general multiplier Θ when sampling the distance
to material interface. A distance to material interface in
material i, λi, is sampled using the distribution

f Θ
i (λi) =

Θ

Λi
exp

(
−

Θλi

Λi

)
. (20)

We refer to the modified versions of the LP and LPLRP
algorithms that incorporate the SP and VY closures (Eqs. (8)
and (16), respectively) as LP-SP, LP-VY, and LPLRP-SP.
Because the SP closure is more general than the VY closure,
we only investigate the use of the SP closure with the LPLRP
algorithm.

NUMERICAL RESULTS

We investigate the accuracy of the Monte Carlo LP,
LP-VY, LP-SP, LPLRP, and LPLRP-SP algorithms using
the set of diffusive benchmark problems defined in [9]. The
transport problems involve a binary stochastic system with
total width given by 2X = (Λ0 + Λ1)M, where M = 1/ε.
The material parameters are given by

Σt (x) = Σt,i , Σa (x) =
Σa,i

M2 , Q (x) =
Qi

M2 , (21)

and the system has vacuum boundary conditions at x ± X.
Three sets of problem parameters are defined as shown in
Table I. These parameters are meant to be representative of
the assumptions used in the asymptotic analysis above: Λi,
Σt,i, σa,i, and qi are all O(1) quantities, Σa,i and Qi are O(ε2)
quantities, and X is O(1/ε). As ε decreases, or conversely
as M increases, the system approaches the diffusive limit
considered in the asymptotic analysis. This diffusive test
problem suite has material one chosen to be a void; solid-
void binary stochastic media are relevant to pebble bed
reactors and atmospheric clouds [9].

Each Monte Carlo simulation was performed using
106 particle histories, resulting in typical pointwise relative
standard deviations for ensemble-averaged scalar flux distri-
butions of approximately 0.1-0.2%. The ensemble-averaged
scalar flux distributions were tallied in the Monte Carlo
simulations using uniform spatial zones of ∆x = 0.1.

For each set of parameters, Vasques and Yadav [9] tabu-
late the benchmark, LP, and LP-VY (adjusted LP) ensemble-
averaged scalar flux at the center of the system, 〈φ (x = 0)〉.
The results computed using the Monte Carlo LP and LPLRP
algorithms and the SP and VY closures considered in this
paper are shown in Table II. We note that the LP and LP-VY
scalar flux values typically agree with those in [9] (obtained
using a deterministic method) to within two standard devi-
ations, providing an independent check on our numerical
implementation. We compare the accuracy of the ensemble-
averaged scalar flux values computed using the Monte Carlo
algorithms to the benchmark values in [9] using relative
errors computed as

E〈φ(x=0)〉 =
〈φ (x = 0)〉MC − 〈φ (x = 0)〉Benchmark

〈φ (x = 0)〉Benchmark
. (22)

We first observe that the LP ensemble-averaged scalar
flux values are significantly in error by approximately 13-
25%, confirming that the LP approximation does not limit
to the correct diffusion result. Both the LP-VY and LP-
SP algorithms are significantly more accurate than the LP
approximation, with relative errors on the order of 1%. As
expected given the asymptotic analysis, these numerical
results confirm that the LP-VY and LP-SP algorithms limit
to the correct diffusion result. The LPLRP algorithm is
slightly more accurate than the LP algorithm, although this
algorithm continues to exhibit errors on the order of 10-20%.
Although a formal asymptotic analysis does not exist, our
computational results suggest that, like the LP algorithm,
the LPLRP algorithm does not limit to the correct diffusion
result. Finally, the LPLRP-SP algorithm exhibits accuracy
similar to the LP-VY and LP-SP algorithms, with relative
errors on the order of 1%.



TABLE I: Parameters for Diffusive Test Problem Suite
Set Λ0 Λ1 Σt,0 σa,0 q0 Σt,1 σa,1 q1

A 1.0 0.5
B 1.0 1.0 1.0 0.1 0.2 0 0 0
C 0.5 1.0

TABLE II: Ensemble-Averaged Scalar Flux 〈φ (x)〉 and Relative Error at x = 0
〈φ (x = 0)〉 Relative Error (%)

Set M Benchmark LP LP-VY LP-SP LPLRP LPLRP-SP LP LP-VY LP-SP LPLRP LPLRP-SP
A 20 0.0836 0.0729 0.0827 0.0823 0.0751 0.0829 -12.8 -1.0 -1.5 -10.2 -0.8

40 0.0776 0.0678 0.0780 0.0777 0.0698 0.0778 -12.6 0.5 0.1 -10.0 0.2
60 0.0758 0.0659 0.0761 0.0762 0.0682 0.0760 -13.1 0.4 0.6 -10.0 0.2

B 20 0.0816 0.0639 0.0826 0.0823 0.0675 0.0821 -21.7 1.2 0.8 -17.3 0.6
40 0.0767 0.0587 0.0776 0.0772 0.0622 0.0774 -23.5 1.2 0.7 -18.9 1.0
60 0.0758 0.0569 0.0759 0.0757 0.0605 0.0761 -24.9 0.2 -0.1 -20.2 0.4

C 20 0.0238 0.0195 0.0240 0.0239 0.0202 0.0240 -17.9 1.0 0.3 -15.1 0.7
40 0.0210 0.0167 0.0212 0.0212 0.0173 0.0212 -20.7 1.1 0.9 -17.5 0.8
60 0.0204 0.0158 0.0204 0.0204 0.0164 0.0203 -22.7 -0.1 -0.2 -19.7 -0.6

CONCLUSIONS

We demonstrated that the SP closure has the correct
asymptotic limit for the diffusive physical system under
investigation in this paper and that the VY closure is a
special case of the SP closure obtained by assuming equal
absorption in the two materials. Both of these closures
are readily implemented in the Monte Carlo LP and LPLRP
algorithms for particle transport in BSM. Through numerical
comparisons to a diffusive benchmark suite, we confirmed
that 1) the LP and LPLRP algorithms do not limit to the
appropriate diffusion solution and 2) the LP-VY, LP-SP,
and LPLRP-SP algorithms limit to the appropriate diffusion
solution and are of comparable accuracy.

The LPLRP algorithm has been shown to be gener-
ally more accurate than the LP algorithm for non-diffusive
problems [3, 4, 7]. However, the numerical results in this
paper indicate that the LPLRP algorithm does not limit to
the correct diffusion equation for the asymptotic limit under
consideration. The work in this paper demonstrates that the
SP algorithm does limit to the correct diffusion equation for
the asymptotic limit considered. Future work will investi-
gate the possibility of whether the LPLRP-SP algorithm is
accurate for both diffusive and non-diffusive problems.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

1. G. C. POMRANING, Linear Kinetic Theory and Parti-
cle Transport in Stochastic Mixtures, World Scientific
Publishing Co. Pte. Ltd., River Edge, New Jersey, USA
(1991).

2. C. D. LEVERMORE, G. C. POMRANING, D. L.
SANZO, and J. WONG, “Linear Transport Theory in

a Random Medium,” J. Math. Phys., 27, 2526–2536
(1986).

3. G. B. ZIMMERMAN and M. L. ADAMS, “Algorithms
for Monte-Carlo Particle Transport in Binary Statistical
Mixtures,” Trans. Am. Nucl. Soc., 64, 287 (1991).

4. P. S. BRANTLEY, “A Benchmark Comparison of
Monte Carlo Particle Transport Algorithms for Binary
Stochastic Mixtures,” J. Quant. Spect. Rad. Trans., 112,
599–618 (2011).

5. M. L. ADAMS, E. W. LARSEN, and G. C. POMRAN-
ING, “Benchmark Results for Particle Transport in a
Binary Markov Statistical Medium,” J. Quant. Spect.
Rad. Trans., 42, 253–266 (1989).

6. B. SU and G. C. POMRANING, “Limiting Correlation
Length Solutions in Stochastic Radiative Transfer,” J.
Quant. Spect. Rad. Trans., 51, 893–912 (1994).

7. P. S. BRANTLEY, “Incorporation of a Modified Clo-
sure in a Monte Carlo Particle Transport Algorithm for
Binary Stochastic Media,” Trans. Am. Nucl. Soc., 106,
342–345, on CD–ROM (2012).

8. E. W. LARSEN, R. VASQUES, and M. T. VILHENA,
“Particle Transport in the 1-D Diffusive Atomic Mix
Limit,” Proc. of Mathematics and Computation, Super-
computing, Reactor Physics, and Nuclear and Biologi-
cal Applications (2005).

9. R. VASQUES and N. K. YADAV, “Adjusted Levermore-
Pomraning Equations for Diffusive Random Systems
in Slab Geometry,” J. Quant. Spect. Rad. Trans., 154,
98–112 (2015).

10. E. E. LEWIS and W. F. MILLER, JR., Computational
Methods of Neutron Transport, American Nuclear Soci-
ety, La Grange Park, IL (1993).


